SUCCESS KEY TEST SERIES

First Term Exam (Sample Paper)[MODEL ANSWER]
Std: VIII (E.M)
Subject: Mathematics
Time: 2Hrs
Date :
Chapter No. 1 to 8
Q. 1 (A) Choose the correct alternative answers for each of the following questions:
(1) Ans. (b) 12
(2) Ans. (d) B
(3) Ans. (b) 10 cm
(4) Ans. (c)
(B) Solve the following sub questions:
(1) Ans. $(x+3)(x-4)$
(2) Ans. Inverse variation
(3) Ans. $40<141$

$$
\therefore 40 / 29<141 / 29
$$

Q. 2 Solve the following sub questions:
(1) Ans. $(58)^{3}=(60-2)^{3}$

$$
\begin{aligned}
& =(60)^{2}-3(60)^{2}(2)+3(60)(2)^{2}-(2)^{3} \\
& =216000-21600+720-8 \\
& =195112
\end{aligned}
$$

(2) Ans. Opposite sides of a rectangle are congruent.

$$
\therefore 1(B C)=1(A D)=4.5 \mathrm{~cm}
$$

The measure of each angles of a rectangle is 90°

Rough figure
$\therefore \mathrm{m} \angle \mathrm{A}=\mathrm{m} \angle \mathrm{B}=90^{\circ}$

(3) Ans. (1) $5832=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$

$$
=2^{3} \times 3^{3} \times 3^{3}
$$

$$
5832=(2 \times 3 \times 3)^{3}=18^{3}
$$

$$
\therefore \sqrt[3]{5832}=\left(18^{3}\right)^{1 / 3}=18
$$

$$
\therefore \sqrt[3]{5832}=18
$$

(2) $4096=2 \times 2 \times 2$
$=2^{3} \times 2^{3} \times 2^{3} \times 2^{3}$
$=(2 \times 2 \times 2 \times 2)^{3}$

$$
=16^{3}
$$

$$
\therefore \sqrt[3]{4096}=\left(16^{3}\right)^{1 / 3}=16
$$

$$
\therefore \sqrt[3]{4096}=16
$$

(4) Ans. $(0.02)^{3}=0.02 \times 0.02 \times 0.02$

$$
=0.000008
$$

(5) Ans. $m^{2}-n^{2}-(m+n)(m-n)$

> [Using the formula $\left.a^{2}-b^{2}=(a+b)(a-b)\right]$ $m^{3}-n^{3}=(m-n)\left(m^{2}+m n+n^{2}\right)$
[Using the formula $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$]

$$
\begin{aligned}
& \frac{m^{2}-n^{2}}{(m+n)^{2}} \times \frac{m^{2}+m n+n^{2}}{m^{3}-n^{3}} \\
& =\frac{(m+n)(m-n)}{(m+n)(m+n)} \times \frac{m^{2}+m n+n^{2}}{(m-n)\left(m^{2}+m n\right.} \\
& =\frac{1}{m+n} \\
& \therefore \frac{m^{2}-n^{2}}{(m+n)^{2}} \times \frac{m^{2}+m n+n^{2}}{m^{3}-n^{3}}=\frac{1}{m+n}
\end{aligned}
$$

$$
=\frac{(\mathrm{m}+\mathrm{n})(\mathrm{m}-\mathrm{n})}{(\mathrm{m}+\mathrm{n})(\mathrm{m}+\mathrm{n})} \times \frac{\mathrm{m}^{2}+\mathrm{mn}+\mathrm{n}^{2}}{(\mathrm{~m}-\mathrm{n})\left(\mathrm{m}^{2}+\mathrm{mn}+\mathrm{n}^{2}\right)} \quad \text { [From I, II] }
$$

Q. 3 Solve any four of the following sub questions:

(1) Ans. Construction on the number line.
$\mathrm{OQ}=2, \mathrm{QO} \perp \mathrm{OP}$ Take $\mathrm{PQ}=1$
By Pythagoras theorem $\triangle \mathrm{POQ}$

$$
\begin{aligned}
& \mathrm{OP}^{2}=\mathrm{OQ}^{2}+\mathrm{QP}^{2}=(2)^{2}+(1)^{2}=4+1 \\
& \mathrm{OP}^{2}=5 \\
& \therefore \mathrm{OP}=\sqrt{5}
\end{aligned}
$$

Now O as centre $\mathrm{OP}=$ radius, draw an arc with centre O and radius OP .
Make the point of intersection of the line and the arc as C . The point C shows the number $\sqrt{5}$.
(2) Ans. $=p^{3}+3 p^{2} q+3 p q^{2}+q^{3}+p^{3}-3 p^{2} q+3 p q^{2}-q^{3}$
$=2 p^{3}+6 p q^{2}$
(3) Ans. $m \alpha n$
[given]
$\therefore \mathrm{m}=\mathrm{kn} \quad$ [k is constant of variation]
Substituting $\mathrm{m}=154$ and $\mathrm{n}=7$ we get,
$154=\mathrm{kx} 7$
$\therefore \frac{154}{7}=\mathrm{k} \quad \therefore \mathrm{k}=22$
\therefore The equation of variation is $m=22 n$
Substituting $n=14$ in equation of variation.
$\therefore \mathrm{m}=22 \times 14$
$\therefore m=308$
(4) Ans.

Rough Figure
(5) Ans. Let us draw a rough figure, show the given information in that figure. From the figure we see that after drawing seg $Q R$, if seg RS is drawn making an angle of 62° at the point R, we can get points Q, R and S of the quadrilateral.

We will get point P on ray $S P$ at a distance of 4 cm from S, which makes an angle of 75° at point S . We get $\square \mathrm{PQRS}$ of given measure after joining points P and Q. Now you can do this construction .

Q. 4 Solve the following sub questions:

(1) Ans. $3 x^{2}-x-2$

$$
\begin{align*}
& =3 x^{2}-3 x+2 x-2 \\
& =3 x(x-1)+2(x-1) \\
& =(x-1)(3 x+2) \\
& x^{2}-7 x+12 \\
& =x^{2}-4 x-3 x-12 \\
& =x(x-4)-3(x-4) \tag{IV}\\
& =(x-4)(x-3) \tag{III}
\end{align*}
$$

$3 \mathrm{x}^{2}-7 \mathrm{x}-6$
$=3 \mathrm{x}^{2}-9 \mathrm{x}+2 \mathrm{x}-6$
$=3 \mathrm{x}(\mathrm{x}-3)+2(\mathrm{x}-3)$
$=(x-3)(3 x+2)$
$\mathrm{x}^{2}-4$
$=(x)^{2}-(2)^{2}$
Using the formula
$\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}+\mathrm{b})(\mathrm{a}-\mathrm{b})$
$=(x+2)(x-2)$
$\frac{3 x^{2}-x-2}{x^{2}-7 x+12} \div \frac{3 x^{2}-7 x-6}{x^{2}-4}$
$=\frac{(x-1)(3 x+2)}{(x-4)(x-3)} \div \frac{(x-3)(3 x+2)}{(x+2)(x-2)} \quad$ [from I, II, III, IV]
$=\frac{(x-1)(3 x+2)}{(x-4)(x-3)} X \frac{(x+2)(x-2)}{(x-3)(3 x+2)}$
$=\frac{(x-1)(x+2)(x-2)}{(x-4)(x-3)^{2}}$
$\therefore \frac{3 x^{2}-x-2}{x^{2}-7 x+12} \div \frac{3 x^{2}-7 x-6}{x^{2}-4}=\frac{(x-1)(x+2)(x-2)}{(x-4)(x-3)^{2}}$
(2) Ans. Let the speed to the carbe s and time required to cover some distance be t.

There is an inverse variation between speed and time.
$\therefore \mathrm{s} \alpha \frac{1}{\mathrm{t}}$
$\therefore \mathrm{s} \times \mathrm{t}=\mathrm{k} \quad$ [k is constant of variation]
Substituting $\mathrm{s}=60$ and $\mathrm{t}=480$ [1 hour $=60$ minutes]
$\therefore 60 \times 480=\mathrm{k}$
$\therefore \mathrm{k}=28800$
\therefore The equation of variation is $\mathrm{s} \times \mathrm{t}=28800$
Substituting $\mathrm{t}=(7 \times 60+30)=450$ minutes in equation of variation
$\therefore \mathrm{s} \times 450=28800$
$\therefore \mathrm{s}=\frac{28800}{450}$
$\therefore \mathrm{s}=64$
Hence, if speed of car is $64 \mathrm{~km} / \mathrm{hr}$ then the same distance can be covered in $7 \frac{1}{2}$ hours.
\therefore Increase in speed $=64-60=4 \mathrm{~km} / \mathrm{hrs}$.
\therefore Speed of the car should be increased by $4 \mathrm{~km} / \mathrm{hr}$.

